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Inferred box harmonization and aggregation
for degraded face detection in crowds

Dong Liang1 ·Qixiang Geng1 ·Han Sun1 ·Huiyu Zhou2 · Shun’ichi Kaneko3

Abstract
Since objects usually keep a certain distance from the surveillance camera, small object
detection is a practical issue. Detecting small objects is also one of the remaining chal-
lenges in the computer vision community. The current detectors usually leverage a more
robust backbone network, build one or more multi-scale feature pyramids, or define a more
precise anchor-box screening criteria. However, the distinguishable features are scarce due
to the appearance degradation and a shallow resolution. In this paper, we leverage high-
level context to enhance anchor-based detectors’ capabilities for small and crowded face
detection. We first define face co-occurrence prior based on density maps (FCP-DM) to
explore extensive high-level contextual information. We propose a score-size-specific non-
maximum suppression (S3NMS) to replace the traditional non-maximum suppression at
the end of anchor-based detectors. Our approach is plug and play and model-independent,
which could be concatenated into the existing anchor-based face detectors without extra
learning. Compared to the prior art on the WIDER FACE hard set, our method increases an
Average Precision of 0.1%-1.3%, while on Crowd Face, which we make for testing small
and crowded face detection, it raises an Average Precision of 1% - 6%. Codes and dataset
have been available online.

Keywords Object detection · Degraded face · Video surveillance

1 Introduction

For video surveillance in the open world, robust face detection is an ultimate component
to handle various facial-related tasks. Since the faces are usually far from the surveillance
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camera, small face detection is a problem with practical needs. In recent years, renewed
detection paradigms [8, 13], strong backbone [14, 15, 20] and large-scale datasets [9, 31]
jointly push forward the limit of face detection to approach humans’ cognition. However,
because flexible mechanisms and abundant domain knowledge guide human’s cognition,
human has advantages on handing the challenges of low-resolution [18]. In the computer
vision community, a central issue of small object detection is the appearance degradation of
a small object with shallow resolution. The essential issue is that the distinguishable features
are scarce due to appearance degradation.

Anchor-based face detectors have achieved satisfactory performance on the benchmark
WIDER FACE [31]. Recently, many face detectors rely on features extracted from deep
Convolutional Neural Network (CNN). They obtain low-level features of the objects (such
as texture and edge related feature) from the low layers of the network and high-level fea-
tures such as semantic-related feature from the high layers. However, for face detectors,
thorny issues involved in detecting degraded faces are caused by small-size, defocus blur,
and occlusion [35]. These blurred and low-resolution faces only have dozens or even a
few pixels, containing limited feature information. When using the standard spatial pooling
process [35] in a CNN, appearance features would be further degraded. This problem is ill-
posed for a low-resolution object as CNN can only provide very few low-level features at
the low layers and almost no high-level features of these faces at the high layers. Therefore,
aggregating more information from context becomes a inevitable choice.

Some works [8, 20, 30, 35, 38] have introduced contextual information for low-resolution
face detection. In these methods, the contextual information of faces is usually employed in
the form of low-level context via an augmented receptive field of feature maps. Obviously,
rich low-level context is helpful to detect small objects and easy to implement [3, 23], but
augmented receptive field relies on the limited local area. Some current detectors leverage a
more robust backbone network [13], build one or more multi-scale feature pyramids [8], or
define a more precise anchor-box screening criteria [20]. On the other hand, [1] shows that
humans detecting objects that violate their high-level context take longer and make more
errors. Hence, object detection is expected to fit into a certain high-level scene context to
reach humans’ cognition.

We also argue that high-level contextual information is valuable for small object detec-
tion. Different from the traditional context which rely on adjusting the local receptive fields,
we explore the compositional semantics–the relationship among the confidence, quan-
tity and size of objects, as high-level contextual information and extend it to the whole
scene. We presents a universal strategy with density-map-based face co-occurrence pri-
ors (FCP-DM) and score-size-specific non-maximum suppression (S3NMS), independent
of training paradigms to directly replace the standard non-maximum suppression (NMS)
post-processing formula in anchor-based detectors. FCP-DM harmonizes the outputs of a
detector according to crowd density estimation. It enhances the sensitivity and specificity of
the detector via increasing true positives. S3NMS aggregates the bounding box by decreas-
ing false positives and increasing true positives according to the inferred face boxes’ score
and size. Figure 1 illustrates the proposed detection framework. We also collect a challeng-
ing face detection dataset with tiny faces to provide adequate samples to further prominent
the bottleneck of detecting crowded faces.

The contribution of this paper are listed as follows.

• We proposed a general approach using high-level contextual information for small and
crowd face detection.
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Fig. 1 Architecture of the proposed framework. Face co-occurrence priors increase true positives of the
inferred face boxes according to crowd density estimation. S3NMS further increases true positive and reduces
false positive according to the inferred face boxes’ score and size. Detector confidence is given by the
color bar on the right of the images, blue boxes represent low confidence, and yellow boxes represent high
confidence

• The proposed scheme reduces false positives and increases true positives according to
the inferred face boxes’ score, quantity, and size under the guidance of crowd density
estimation.

• The proposed scheme makes sense to detect multi-scale and low-resolution faces in
the crowded challenge and provides a refined structure to avoid arbitrary discarding or
preservation of the bounding box.

• It requires no extra training and is simple to be implemented.

The remainder of this paper is organized as follows. We discuss the related work in
Section 2. We describe problem formulation and the proposed FCP-DM and S3NMS in
detail in Section 3. The experimental results are presented and discussed in Section 4, and
the conclusions, limitations, and future work are presented in Section 5.
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2 Related work

2.1 Anchor-based object detectionmodel

Supervised training of a detection model requires bounding boxes and their class labels
associated with the objects in images. However, it is not trivial for CNNs to directly pre-
dict an order-less set of arbitrary cardinals [24, 32]. One commonly used strategy is to
introduce anchors, which employ a divide-and-conquer strategy to match objects with con-
volutional features spatially. Anchor box is firstly introduced in Faster R-CNN [20] and
serves as a reference at multiple scales and aspect ratios for object detection. During
inference, anchors independently predict object bounding boxes, where the box with the
highest classification score is retained after the non-maximum suppression (NMS) proce-
dure. Anchor-based detection methods include the well-known FPN [13], RetinaNet [14],
SSD [15], and YOLOv3 [19], all of which requires additional post-processing, i.e. NMS.
Anchor-free approaches, including CornerNet [10], CenterNet [4], and ExtremeNet [37]
et al., have shown a great potential for the cases of extreme object scales and aspect ratios.
However, without the anchor box as the reference point, direct regression of bounding
boxes from convolutional features remains challenging. On the benchmark WIDER FACE
[31], the most competitive methods are still the anchor-based models. We continue to tap
the potential of anchor-based methods, expecting to enhance these methods’ performance
without additional training.

2.2 Using context in face detection

The idea of using context in object detection has been studied in many works. Divvala et al.,
Oliva and Torralba and Wolf and Bileschi [3, 18, 28] reviewed contextual information used
in contemporary methods and analysed its role for challenging object detection in empirical
evaluation. For specific face detection, Hybrid Resolution Model (HR) [8] is a simple yet
effective framework for finding small faces, demonstrating that both large context and scale-
variant representations are crucial. It specifically shows that massively large receptive fields
can be effectively encoded as a foveal descriptor that captures both coarse context and high-
resolution image features. Similarly, [38] pools ROI features around faces and bodies for
detection, which improves overall performance. The methods mentioned above either build
multi-scale feature pyramids or enlarge feature maps’ receptive fields to employ the low-
level context. But for the task of small face detection, the above methods are inefficient in
using context information and not as flexible as a human cognitive system. For the human
cognitive system, high-level context and domain knowledge help reduce decision time and
disambiguate the low-quality inputs. We expect to fit into a proper high-level context of a
scene to enhance the anchor-based face detectors.

2.3 Inferred box harmonization

The goal of Non-Maximum Suppression (NMS) [21] penalizes false positive detections,
which has been an integral part of many object detection algorithms in computer vision [7,
17, 22, 27]. Soft-NMS in [2] argues that the conventional NMS is too greedy because only
the bounding box with the maximum score is selected. In contrast, all other bounding boxes
with a significant overlap with this box are suppressed using a pre-defined threshold. Soft-
NMS suppresses the bounding box by reducing its score instead of just removing it. In our
preliminary experiments, however, soft-NMS causes the increase of false positives because
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some redundant boxes cannot be deleted due to high scores. More complex learning-based
methods rely on the model-related learning process. Hosang [6] proposed a learning-based
NMS to improve localization and occlusion handling. Tychsen-Smith [26] argued that many
detection methods are designed to identify only a sufficiently accurate bounding box, rather
than the best available one, and proposed fitness NMS. Although learning-based methods
have achieved good performance in specific scenarios, they also have poor generalization
capabilities and insufficient cross-domain adaptability. We tend to develop plug-and-play
and model-independent paradigms, which could be integrated into the existing anchor-based
detectors without extra learning.

3 Problem formulation and proposed approaches

3.1 Co-occurrence prior based on density maps

3.1.1 Crowd density map

A density map is firstly used in crowd counting literature. Zhang et al. [36] proposes geom-
etry adaptive and fixed kernels with Gaussian convolution to generate a density map. Li
et al. [12] introduces a dilated convolutional neural network to improve the density map’s
quality. Liu et al. [16] combines features obtained using multiple receptive field sizes and
learns the importance of features at each image location, which adaptively encodes the scale
of the contextual information required to predict crowd density accurately. In our problem
formulation, crowd density estimation is employed to derive face co-occurrence priors for
harmonizing a face detector’s outputs.

A density map is also used in crowd analysis since it can exhibit the headcount, loca-
tions and their spatial distribution. Given a set of N training images {Ii}(1≤i≤N) with
corresponding ground-truth density maps D

gt
i , the goal of density map estimation is to

learn a non-linear mapping F that maps an input image Ii to an estimated density map
Dest

i (Ii) = F (Ii), that is close to the ground truth D
gt
i in term of L2 norm. To represent the

density maps, to each image Ii , we associate a set of 2D points P est
i = {

Pi,j

}
1≤j≤Ci

that
denote the position of each human head in the scene, where Ci is the headcount in image
Ii . The corresponding estimated density map Dest

i is obtained by a total probability formula
via convolving an image with a Gaussian kernel N est

(
p | μ, σ 2

)
. We have

∀p ∈ Ii ,D
est
i (p | Ii) = F (p | Ii) = F

[ Ci∑

j=1

N gt
(
p | μ = Pi,j , σ

2
) ]

, (1)

where μ and σ represent the mean and standard deviation of the normal distribution.
For each head point Pi,j in a given image, denoting the distances to its K nearest

neighbors as {di,j
k }(1≤k≤K). The average distance is therefore

di,j = 1

K

K∑

k=1

d
i,j
k . (2)

A crowd density map cannot directly show the size of the head. However, since the
individuals are close to each other in a high-density crowd scene, it can roughly represent
the head size. The head size is approximately equal to the distance between two neigh-
boring individuals’ centers in crowded scenes. The density estimate network we used is
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Context-Aware Network (CAN) [16]. It combines features obtained using multiple receptive
field sizes and learns the importance of each feature at each image location. It adaptively
encodes the scale of the contextual information required to predict crowd density accurately.
This method yields an algorithm that outperforms state-of-the-art crowd counting methods,
especially when perspective effects are strong.

3.1.2 Co-occurrence of homogeneous faces for inferred box harmonization

In this part, we focus on using the face co-occurrence prior to optimize the detectors in
crowd scenarios. Since the face size approaches the limit of imaging resolution, the face
appearance is scarce and inadequate. A low-resolution face that is difficult for humans to
recognize is also a challenge for a vision-based detector. General face detectors are highly
dependent on appearance features, and the severe scarcity of information is essentially ill-
posed, which can directly lead to the degradation of detection performance. However, it is
unavoidable normality in crowd-scene face detection. We utilize the co-occurrence of faces
as a higher-level context to make more sensitive detection when the face is ambiguously or
marginally visible in a crowd scene.

Face co-occurrence prior here refers to the harmonization of homogeneous faces–If the
scores of many faces dominate in an image, it is reasonable that some inferred boxes similar
to the sizes of these faces have a high probability of being faces. According to the co-
occurrence prior, we increase the scores of real faces with low scores after a detector’s
inferring phase.

We send the image into the density estimate network to generate the density map Dest
i

first. From the perspective of making full use of the context, the contextual information on
a broader perception area of a density map could provide more co-occurrence prior to the
area just around the observed face. Hence, it is unreasonable to use (2) to estimate face co-
occurrence directly. However, using density maps to reconcile the results of face detection
seems to be a chicken-egg paradox. At least, how to use the inaccurate density map to
adjust the result of face detection is a complicated interaction problem of heterogeneous
information.

As mentioned earlier, the head size in a high-density crowd scene can be represented
by a density map rather than in a low-density crowd scene. Hence, we need to design an
operator to disturb the inference in high-density areas and give up interventions for low-
density areas. We define a dense grid on image Ii , and generate blocks A = {An

i } with 50%
overlapping to minimize border effects, where n is the number of blocks. The population in
different blocks is estimated by integrating over the values of the predicted density map as
follows,

Ẑn
i =

∑

p∈An
i

Dest
i (p | An

i ). (3)

In the corresponding block, the average size of all the high score faces is calculated and
recorded as BSn

avg .

BSn
avg = an

i /Ẑn
i , (4)

where an
i is the area of region An

i . There are two constraints to filter the inferred box for
reconciliation. If the score of a inferred box sx,y exceeds the score threshold st , the inferred
box could be a candidate of human face. The inferred boxes whose scores are ultimately
lower than st will be deleted. These boxes with the size between (1 − γ, 1 + γ )BSavg are
further filtered out as the inferred box for reconciliation. The reconciliation formula is as
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follows,
sx,y = σ [Dest

i(x,y)(p | An
i )]sx,y + sx,y, (5)

where σ is the Sigmoid function. The above proposed FCP-DM scheme is summarized in
Algorithm 1.

3.2 Score-Size-specific NMS

NMS [21] is utilized as standard processing for object detection to partition bounding-boxes
into non-overlapping subsets. The final detections are obtained by averaging the coordinates
of the detection boxes in set B. If bu and bv are two bounding boxes, the Intersection over
Union overlap (IoU) refers to the standard Jaccard similarity used in NMS, which can be
expressed as follows,

IoU(bu, bv) = bu ∩ bv

bu ∪ bv

. (6)

The conventional NMS preserves the detection box with the maximum score and discards
all the other inferred boxes overlapped with an IoU threshold. Specifically, if IoU(bu, bv) >

Nt , (0.3 is obtained here as most detectors using this value), then the box with the lower
score is deleted directly. This principle is also effective in the multi-scale pyramid scheme,
as more inferred boxes may be detected in different pyramid layers. However, this will cause
missed detection, as the face covered by part of another face or two faces close to each other
may not be detected. As illustrated in Fig. 2, in the process of the three models moving
close to each other, the middleman’s face was gradually covered, and the detection score
decreased significantly. Meanwhile, due to the instability fluctuation of the maximum value
(as shown in Fig. 2), the use of NMS will aggravate the instability of the detection score.

Based on NMS, soft-NMS [2] provides a chance to preserve the overlapped and closed
objects using a penalizing function to the inferred scores. NMS is a non-continuous pro-
cedure to produce a penalty when an IoU threshold of Nt is reached, which could lead to
abrupt changes to the ranked score list of the inferred boxes. A continuous penalty function
should have no penalty when there is no overlap and a large penalty at a high overlap. Also,
when the overlap is low, it should gradually increase the penalty, and bu should not affect
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Fig. 2 The statistic of the maxim detection score of HR [8] face detection model using a Hikvision surveil-
lance camera. In the process of the three models moving close to each other, the middleman’s face was
gradually covered, and the detection score decreased significantly.

the scores of boxes with very low overlap. However, when the overlap of a box bv with
bu becomes close to 1, bv should be significantly penalized. Taking this into consideration,
soft-NMS updates the pruning step with a Gaussian penalty function as follows,

sx,y = sx,ye
−IoU(bu,bv)2/δ . (7)

This update rule is applied in each iteration, and the scores of all the remaining detection
boxes are updated. It suppresses the inferred box by reducing its score instead of just remov-
ing it. However, Both NMS and soft-NMS ignore the role of size factor in the inferred box
aggregation. Consider an extreme situation, the areas of the two boxes are quite different,
that is bu >> bv . From the definition of (6), the intersection is much smaller than the
union. The IoU(bu, bv) cannot reach the threshold of deleting redundant boxes in NMS
and soft-NMS. In the inferred box aggregation process, a more reasonable way should be
to implement a retention operator among similar size boxes. Based on IoU, we define ACB
(Area Consistency of boxes) as follows,

ACB(bu, bv) = bu

bv

. (8)

We adopt a constraint that ACB(bu, bv) must be in a range between 1 ± Bt . Algo-
rithm 2 summarizes the proposed S3NMS scheme. If IoU(bm, bx,y) � Nt and 1 − Bt �
ACB(bm, bx,y) � 1 + Bt , where bm is the box with the highest score in B, it decays the
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scores using a continuous function sx,y = sx,ye
−IoU(bu,bv)2/δ . It uses NMS when the bound-

ing box’s score is low and uses soft-NMS when the score is high. A high score box is more
likely to be an occluded face, and soft-NMS is used to re-identify such a case. For a low
score box, NMS avoids this non-face box to be false positive. The above scheme gives a
chance to detect faces covered by other faces without causing false positives as soft-NMS
does.

Score-size-specific NMS is a compromise solution of NMS and Soft-NMS, which pro-
vides a fine-grained consideration of the score and the size to avoid arbitrary discarding or
preservation of the bounding box, which is essential in the multi-scale face detection task.
More detailed performance evaluation will be discussed in the experiment section.

4 Experimental evaluation

4.1 Dataset preparation

In face detection literature, a widely used benchmark is WIDER FACE [31]. WIDER FACE
contains 32203 images with 393793 faces, 40% of which are used for training, 10% for val-
idation, and 50% for testing. According to the detection rate, the validation data are divided
into three classes: “easy”, “medium”, and “hard”, gradually increases various difficult sit-
uations in various face detection scenes in open environments, including size changes,
occlusion, pose changes, lighting changes, and background confusion.

Considering the proposed solution in this paper is mainly for obscured small face detec-
tion in crowd scenes, in addition to the commonly used WIDER FACE, we prepare a new
dataset - Crowd Face by ourselves collected from the Internet. There are 34 images with
10731 annotated faces, and the maximum number of faces on an image is 1001. As illus-
trated in Fig. 3, we measured the average size of objects (blue plots) and the average number
of objects per image (orange plots). Crowd Face has much smaller (around 10 times smaller
in the average size of objects) and more faces (approximately 20 times more in average
number of objects per image) than WIDER FACE. As shown in Fig. 5 and Appendix B,
the Crowd Face dataset has many low-resolution, small, and obscured faces. It is a chal-
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Fig. 3 Comparison of benchmark dataset WIDER FACE and our Crowd Face dataset. Two quantities are
measured for each dataset: average size of objects (blue plots) and average number of objects per image
(orange plots)

lenging dataset with hard samples, specifically for high-density face detection. Testing face
detection algorithms on Crowd Face is helpful to explore the shortages of face detectors.a

4.2 Experimental setting

In our experiments, the models we used to verify our proposed methods are HR [8],
EXTD [33], S3FD [34], LFFD [5], CAHR [29], PyramidBox [25], DSFD [11] and TinaFace
[39]. All the models we used in the experiments are trained with the WIDER FACE training
set and tested on the WIDER FACE validation set and Crowd Face. In our experiments, we
compare many different settings of parameters, and finally set st = 0.5, γ = 0.1 for FCP-
DM, Sth = 0.5, Bt = 0.1 for S3NMS. Our experiments are run on GTX1080 with 16 GB
RAM and 12-core i7 CPU.

4.3 Experiments for face co-occurrence prior based on density map

In this part, the co-occurrence priors based on a density map is tested on Crowd Face,
as the proposed method is mainly used to detect faces in high-density crowd scenes. We
introduce density information to the state-of-the-art anchor-based detectors, and then com-
bine with our proposed algorithm. As is illustrated in Fig. 4, we integrate FCP-DM to the
trained detectors: HR [8], CAHR [29], EXTD [33], S3FD [34], PyramidBox [25] and DSFD
[11], and compare their performance with the original detectors. The red curve in each
figure represents our proposed co-occurrence prior based on the density map integrated
into the detector. The blue curve below represents the original detector without our pro-
posed method. The results show that the proposed FCP-DM has higher accuracy at the same
precision rate than the original detectors. Face co-occurrence priors increase true positives
according to crowd density estimation. Figure 5 shows the comparison of the co-occurrence
prior within HR (cyan ellipses) and original HR (magenta rectangles) in crowd scenes,
where the proposed approach detects more true faces. It illustrates that the proposed method
can enhance the detectors to find more true faces in crowd scenes with many low-resolution
small faces.
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Fig. 4 P-R curve of FCP-DM, compared with the original models (HR [8], CAHR [29], EXTD [33], S3FD
[34], PyramidBox [25], DSFD [11])

4.4 Experiments for score-size-specific NMS

In this part, the score-size-specific NMS (S3NMS) is tested. The test sets include the
WIDER FACE hard set and the Crowd Face, the test models include LFFD [5], HR [8],
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Fig. 5 A comparison of low-resolution face detection in Crowd Face Dataset using our proposed method
within HR detector [8] (cyan ellipses) and the original HR (magenta rectangles)

S3FD [34], CAHR [29], PyramidBox [25], EXTD [33], DSFD [11], the NMS threshold is
0.3.

We integrate NMS, soft-NMS, and our proposed S3NMS into the above state-of-the-art
detectors; these detectors are all anchor-based models. Our proposed S3NMS is a post-
processing method without any additional training. We compared our approach with other
post-processing methods NMS and Soft-NMS, which do not need model training too, as
shown in Table 1, S3NMS has the highest AP compared with NMS and soft-NMS on
WIDER FACE hard set and Crowd Face set. It illustrates that we need a fine-grained consid-
eration of the score and the size to remove redundant boxes. Figure 6 shows the comparison
of true and false positives for original HR, CAHR, PyramidBox, and these models with our

Table 1 AP performance of NMS, Soft-NMS and proposed S3NMS for HR, CAHR and PyramidBox on
WIDER FACE hard and Crowd Face sets

Data/Method NMS Soft-NMS S3NMS Tested model

WIDER FACE hard 0.816 0.820 0.827 HR

0.832 0.835 0.843 CAHR

0.888 0.889 0.890 PyramidBox

Crowd Face

0.665 0.683 0.707 HR

0.691 0.707 0.720 CAHR

0.663 0.671 0.681 PyramidBox
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Fig. 6 Comparison of true and false positives for original HR [8], CAHR [29], PyramidBox [25], and these
models with the proposed score-size-specific NMS

proposed S3NMS on Crowd Face. The right yellow plots in each figure represent our pro-
posed S3NMS integrated with the detector, and the left blue plots represent NMS integrated
with the detector. Figure 7 shows the statistic of the average detection score of HR [8] before
and after cascading with the proposed score-size-specific NMS. The average scores for the 3
models (shown in Figure 2) have been significantly improved after cascading with S3NMS.
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Fig. 7 The statistic of the average detection score of HR [8] before and after cascading the proposed score-
size-specific NMS. The experimental scene is the same as Fig. 2

4.5 Ablation study on crowd face

As shown in Table 2, we perform ablation experiments on Crowd Face. We separately inte-
grate NMS, score-size-specific NMS, and co-occurrence prior based on density maps to
HR [8], PyramidBox [25], EXTD [33], CAHR [29], and DSFD [11] on Crowd Face. We
first compare the performance of NMS and our proposed S3NMS, which shows that our
proposed S3NMS has higher AP performance. Then, we respectively integrate NMS and
S3NMS with FCP-DM into the detectors. The result shows the proposed FCP-DM can
further improve the performance, and S3NMS combined with FCP-DM has the best AP per-
formance. It shows that our proposed S3NMS has higher AP performance than NMS, and
S3NMS combined with co-occurrence priors has higher AP performance than integrates
only one of the two methods into the detectors. FCP-DM and S3NMS increase an overall
AP around 1% - 6% for the above detection models.

4.6 Overall performance onWIDER FACE

In this part, we apply the proposed FCP-DM and S3NMS to the detectors together on the
WIDER FACE dataset. The trained detectors are LFFD [5], HR [8], CAHR [29], EXTD
[33], S3FD [34], PyramidBox [25], DSFD [11], and TinaFace [39] and compare their per-
formance with the original detectors. Table 3 shows that the proposed approach integrating
within most face detectors has better performance than the original methods. It illustrates
that our proposed score-size-specific NMS reduces false positives and increases true pos-
itives according to the inferred face boxes’ score and size. For WIDER FACE hard set,
our results could increase an AP of 0.1-1.3%, indicating the capability of the proposed
approach in challenging situations. The WIDER FACE-easy set contains almost no high-
density scenes—the proposed FCP-DM freezes the density estimation output. Thus the
proposed method maintains consistent results in most models and does not deteriorate the
original performance in low-density scenarios. More demonstration with degraded images
are shown in Appendix A, B, and C.
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Table 2 Ablation study of our proposed score-size-specific NMS and co-occurrence priors based on density
maps to HR, PyramidBox, EXTD, CAHR, DSFD and TinaFace on Crowd Face

Method NMS S3NMS Coexist. AP(%)

� 0.665

HR � 0.707

[8] � � 0.697

� � 0.710

� 0.663

PyramidBox � 0.681

[25] � � 0.720

� � 0.725

� 0.659

EXTD � 0.674

[33] � � 0.682

� � 0.688

� 0.691

CAHR � 0.720

[29] � � 0.702

� � 0.728

� 0.772

DSFD � 0.780

[11] � � 0.776

� � 0.781

� 0.771

TinaFace � 0.776

[39] � � 0.781

� � 0.784

Table 3 Performance of integrating score-size-specific NMS and co-occurrence priors to the trained
detectors on WIDER FACE

Sub-set in WIDER FACE easy medium hard

Method Orignal Proposed Orignal Proposed Orignal Proposed

LFFD [5] 0.873 0.876 0.861 0.865 0.750 0.758

HR [8] 0.925 0.925 0.911 0.912 0.816 0.829

CAHR [29] 0.928 0.928 0.912 0.913 0.832 0.844

EXTD [33] 0.921 0.923 0.911 0.912 0.846 0.853

S3FD [34] 0.945 0.945 0.934 0.936 0.853 0.855

PyramidBox [25] 0.960 0.960 0.948 0.950 0.888 0.890

DSFD [11] 0.966 0.966 0.957 0.957 0.905 0.906

TinaFace [39] 0.963 0.964 0.956 0.958 0.930 0.932
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5 Conclusion, limitations, and future work

We proposed a general approach using high-level contextual information for small and
crowd face detection. The proposed scheme reduces false positives and increases true pos-
itives according to the inferred face boxes’ score, quantity, and size under the guidance of
crowd density estimation. The proposed scheme makes sense to detect multi-scale and low-
resolution faces in the crowded challenge and provides a refined structure to avoid arbitrary
discarding or preservation of the bounding box. It requires no extra training and is simple
to be implemented.

The main limitation of this method is that it needs to rely on the performance of the
density estimate network. The performance of this network is usually affected by the quality
of training data, scene category, and task category. Therefore, the network will need to be
retrained when changing specific tasks, such as vehicle density estimation.

We will explore the capability of the proposed framework for other dense and small
object detection tasks, such as remote sensing scenes with rotated bounding boxes.

Appendix A: Results in a series of degraded images in a classroom
in NUAA (All the portrait rights are licensed)
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Appendix B: Comparing the proposed scheme in the HR detector (cyan
ellipses) and the standard NMS scheme in the HR detector (magenta
rectangles) on Crowd Face
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Appendix C: Performance in various open scenes using ”Three Idiots”
movie clip
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